2025-01-17 15:25:44 +01:00
|
|
|
use std::fs;
|
2025-01-18 09:26:46 +01:00
|
|
|
use serde::Deserialize;
|
2025-01-20 09:47:00 +01:00
|
|
|
use serde_json::{json, Value};
|
2025-01-17 15:25:44 +01:00
|
|
|
use reqwest::blocking::Client;
|
2025-01-20 09:47:00 +01:00
|
|
|
use reqwest::{self, multipart};
|
2025-01-17 15:25:44 +01:00
|
|
|
use std::error::Error;
|
2025-01-20 09:47:00 +01:00
|
|
|
use base64::{Engine as _, engine::general_purpose::STANDARD};
|
2025-01-17 15:25:44 +01:00
|
|
|
|
|
|
|
#[derive(Debug, Deserialize)]
|
|
|
|
struct Config {
|
|
|
|
pixelfed_url: String,
|
|
|
|
access_token: String,
|
|
|
|
visibility: String, // Should be "unlisted"
|
|
|
|
default_text: String,
|
2025-01-17 15:45:48 +01:00
|
|
|
batch_size: usize,
|
2025-01-20 09:47:00 +01:00
|
|
|
openai_api_key: String,
|
|
|
|
openai_api_url: String,
|
|
|
|
openai_model: String
|
|
|
|
|
2025-01-17 15:25:44 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
fn load_config() -> Result<Config, Box<dyn Error>> {
|
|
|
|
let config_str = fs::read_to_string("config.json")?;
|
|
|
|
let config: Config = serde_json::from_str(&config_str)?;
|
|
|
|
Ok(config)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn get_jpeg_files(directory: &str) -> Vec<String> {
|
|
|
|
let mut images = Vec::new();
|
|
|
|
if let Ok(entries) = fs::read_dir(directory) {
|
|
|
|
for entry in entries.flatten() {
|
|
|
|
let path = entry.path();
|
|
|
|
if let Some(ext) = path.extension() {
|
|
|
|
if ext.eq_ignore_ascii_case("jpg") || ext.eq_ignore_ascii_case("jpeg") {
|
|
|
|
images.push(path.to_string_lossy().to_string());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
images
|
|
|
|
}
|
|
|
|
|
2025-01-20 09:47:00 +01:00
|
|
|
async fn get_image_description(config: &Config, image_path: &String) -> Result<String, Box<dyn Error>> {
|
|
|
|
// Read and encode image
|
|
|
|
let image_data = tokio::fs::read(image_path)
|
|
|
|
.await
|
|
|
|
.map_err(|e| format!("Failed to read image file: {}", e))?;
|
|
|
|
|
|
|
|
let base64_image = STANDARD.encode(&image_data);
|
|
|
|
|
|
|
|
// Create ChatGPT API request
|
|
|
|
let client = reqwest::Client::new();
|
|
|
|
let response = client
|
|
|
|
.post(&config.openai_api_url)
|
|
|
|
.header("Authorization", format!("Bearer {}", config.openai_api_key))
|
|
|
|
.header("Content-Type", "application/json")
|
|
|
|
.json(&json!({
|
|
|
|
"model": config.openai_model,
|
|
|
|
"max_tokens": 300,
|
|
|
|
"messages": [
|
|
|
|
{
|
|
|
|
"role": "user",
|
|
|
|
"content": [
|
|
|
|
{
|
|
|
|
"type": "text",
|
|
|
|
"text": "Please describe this image concisely for use as an alt text description. Focus on key visual elements and context."
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"type": "image_url",
|
|
|
|
"image_url": {
|
|
|
|
"url": format!("data:image/jpeg;base64,{}", base64_image)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}))
|
|
|
|
.send()
|
|
|
|
.await?;
|
|
|
|
|
|
|
|
// Improved error handling for API response
|
|
|
|
if !response.status().is_success() {
|
|
|
|
let error_text = response.text().await?;
|
|
|
|
return Err(format!("OpenAI API error: {}", error_text).into());
|
|
|
|
}
|
|
|
|
|
|
|
|
let result: Value = response.json().await?;
|
|
|
|
|
|
|
|
// More detailed error handling for JSON parsing
|
|
|
|
let description = result["choices"]
|
|
|
|
.get(0)
|
|
|
|
.ok_or("No choices in response")?
|
|
|
|
["message"]["content"]
|
|
|
|
.as_str()
|
|
|
|
.ok_or("Invalid content format in response")?
|
|
|
|
.to_string();
|
|
|
|
|
|
|
|
Ok(description)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2025-01-17 15:37:19 +01:00
|
|
|
fn format_post_text(template: &str, batch_num: usize, total_batches: usize, title: &str) -> String {
|
|
|
|
template
|
|
|
|
.replace("@batch@", &format!("Batch {} out of {}", batch_num, total_batches))
|
|
|
|
.replace("@title@", title)
|
2025-01-17 15:32:11 +01:00
|
|
|
}
|
|
|
|
|
2025-01-20 09:47:00 +01:00
|
|
|
async fn upload_images_batch(client: &Client, config: &Config, images: &[String], batch_num: usize, total_batches: usize, title: &str) -> Result<(), Box<dyn Error>> {
|
2025-01-17 15:25:44 +01:00
|
|
|
let url = format!("{}/api/v1/media", config.pixelfed_url);
|
|
|
|
let mut media_ids = Vec::new();
|
2025-01-20 09:47:00 +01:00
|
|
|
let mut media_descriptions = Vec::new();
|
2025-01-17 15:25:44 +01:00
|
|
|
|
|
|
|
for image_path in images {
|
2025-01-20 09:47:00 +01:00
|
|
|
println!("Fetching image description from OpenAI for {}", image_path.to_string());
|
|
|
|
let image_description: String ;
|
|
|
|
if !config.openai_api_key.is_empty() {
|
|
|
|
image_description = get_image_description(&config, &image_path).await?;
|
|
|
|
println!("DESC:\n {} \n", &image_description);
|
|
|
|
media_descriptions.push(image_description.clone());
|
|
|
|
|
|
|
|
} else {
|
|
|
|
image_description = String::new();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2025-01-18 09:26:46 +01:00
|
|
|
println!("Uploading image {}", image_path.to_string());
|
2025-01-20 09:47:00 +01:00
|
|
|
|
|
|
|
let form = reqwest::blocking::multipart::Form::new().text("description", image_description.clone())
|
2025-01-17 15:25:44 +01:00
|
|
|
.file("file", image_path)?;
|
2025-01-18 09:26:46 +01:00
|
|
|
|
2025-01-17 15:25:44 +01:00
|
|
|
let res = client.post(&url)
|
|
|
|
.bearer_auth(&config.access_token)
|
|
|
|
.multipart(form)
|
|
|
|
.send()?;
|
|
|
|
|
|
|
|
let json: serde_json::Value = res.json()?;
|
|
|
|
if let Some(id) = json["id"].as_str() {
|
|
|
|
media_ids.push(id.to_string());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if !media_ids.is_empty() {
|
|
|
|
let post_url = format!("{}/api/v1/statuses", config.pixelfed_url);
|
2025-01-17 15:37:19 +01:00
|
|
|
let post_text = format_post_text(&config.default_text, batch_num, total_batches, title);
|
2025-01-17 15:25:44 +01:00
|
|
|
let body = serde_json::json!({
|
|
|
|
"status": post_text,
|
|
|
|
"media_ids": media_ids,
|
2025-01-20 09:47:00 +01:00
|
|
|
"alt_texts": media_descriptions,
|
2025-01-17 15:25:44 +01:00
|
|
|
"visibility": config.visibility,
|
|
|
|
});
|
2025-01-18 09:26:46 +01:00
|
|
|
|
2025-01-20 09:47:00 +01:00
|
|
|
println!("Posting batch {} out of {} with media {}", batch_num, total_batches, media_ids.len());
|
2025-01-17 15:25:44 +01:00
|
|
|
client.post(&post_url)
|
|
|
|
.bearer_auth(&config.access_token)
|
|
|
|
.json(&body)
|
|
|
|
.send()?;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
2025-01-20 09:47:00 +01:00
|
|
|
#[tokio::main]
|
|
|
|
async fn main() -> Result<(), Box<dyn Error>> {
|
2025-01-17 15:25:44 +01:00
|
|
|
let args: Vec<String> = std::env::args().collect();
|
|
|
|
if args.len() < 2 {
|
2025-01-17 15:37:19 +01:00
|
|
|
eprintln!("Usage: {} <directory> [--title <title>]", args[0]);
|
2025-01-17 15:25:44 +01:00
|
|
|
std::process::exit(1);
|
|
|
|
}
|
|
|
|
|
2025-01-17 15:37:19 +01:00
|
|
|
let mut title = "".to_string();
|
|
|
|
if let Some(index) = args.iter().position(|x| x == "--title") {
|
|
|
|
if index + 1 < args.len() {
|
|
|
|
title = args[index + 1].clone();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2025-01-17 15:25:44 +01:00
|
|
|
let config = load_config()?;
|
|
|
|
let images = get_jpeg_files(&args[1]);
|
|
|
|
let client = Client::new();
|
2025-01-17 15:45:48 +01:00
|
|
|
let total_batches = (images.len() + config.batch_size - 1) / config.batch_size;
|
2025-01-18 09:26:46 +01:00
|
|
|
println!("Found a total of {} images to upload. Will take {} batches", images.len(), total_batches);
|
2025-01-17 15:45:48 +01:00
|
|
|
for (i, chunk) in images.chunks(config.batch_size).enumerate() {
|
2025-01-20 09:47:00 +01:00
|
|
|
upload_images_batch(&client, &config, chunk, i + 1, total_batches, &title).await?;
|
2025-01-17 15:25:44 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
println!("All images uploaded successfully.");
|
|
|
|
Ok(())
|
|
|
|
}
|